Semiselective Medium for *Colletotrichum gloeosporioides* and Occurrence of Three *Colletotrichum* spp. on Pepper Plants

J. B. MANANDHAR, Research Fellow, International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines; G. L. HARTMAN, Research Plant Pathologist, USDA-ARS, University of Illinois, Urbana 61801; and T. C. WANG, Associate Specialist, Asian Vegetable Research and Development Center (AVRDC), Shanhua, Tainan 741, Taiwan, ROC

ABSTRACT

Inhibition of mycelial growth of *Colletotrichum capsici* and *C. gloeosporioides* was significantly (P = 0.01) less than that of *Alternaria* sp. and *Fusarium* spp. when grown on a semiselective medium, *C. gloeosporioides* pepper isolate medium (CGPIM) containing one-quarter strength potato-dextrose agar amended with fenarimol and vinclozolin at 5 μg/ml each, chlorampheicol and erythromycin at 6.5 μg/ml each, iprodione at 15 μg/ml, neomycin sulfate at 20 μg/ml, and tetracycline hydrochloride at 25 μg/ml. Fenarimol enhanced the detection of *C. gloeosporioides* as cream-yellow sporulating colonies formed around infected and/or infested pepper (*Capsicum spp.*) seeds. When pepper seeds were placed on CGPIM and wet filter paper, *C. capsici* occurred at equal frequencies, but the frequency of *C. gloeosporioides* was significantly (P = 0.01) higher on CGPIM than on wet filter paper. *C. capsici* was detected on 14.5% of the seeds from var. LSU Sport, while *C. gloeosporioides* detection was less frequent. *C. gloeosporioides* was isolated from 30 and 1% of diseased fruits harvested and stored for 130 and 225 days, respectively. CGPIM and wet filter paper were equally effective in evaluating the occurrence of *C. capsici*, but the occurrence of *C. gloeosporioides* and *Glomerella cingulata* appressoria was significantly (P = 0.01) higher on CGPIM than on wet filter paper. *C. capsici* was recovered more frequently than either *C. gloeosporioides* or *G. cingulata* on inoculated leaves.

Colletotrichum capsici (Syd.) E.J. Butler & Bissy and *C. gloeosporioides* (Penz.) Penz. & Sacc. in Penz. are the most important *Colletotrichum* spp. reducing marketable fruit yields of pepper (*Capsicum annuum* L. and *Capsicum frutescens* L.) in the tropics and the subtropics (8, 12). *Colletotrichum* spp. infect plants by germinating conidia deposited on plant parts by splashing rain (24). Conidia germinate to form appressoria, which facilitate penetration of host tissue or serve as survival units (15, 16). Appressoria of *C. graminicola* (Ces.) G.W. Wils. were shown to remain dormant until higher temperatures occurred after their formation (21). The occurrence and viability of appressoria of *Colletotrichum* spp. has not been reported on pepper foliage.

Colletotrichum spp. are seedborne in crop plants. *C. capsici* (5–9, 17, 22) and *C. gloeosporioides* (syn. *C. piperatum* Ellis. & Everh. in Halst.) (5, 8, 22) occur either externally or internally in pepper seeds. Survival of mycelia and stromata in infected pepper seeds has been reported (22). Moist filter paper is commonly used to detect seedborne *Colletotrichum* spp. (9, 12, 18). In preliminary studies, *C. capsici* grew from pepper seeds and other plant parts when placed on wet filter paper, but slow-growing *C. gloeosporioides* was not detected (J. B. Manandhar, unpublished). Fast-growing organisms such as *Alternaria* and *Fusarium* spp. and bacteria often interfere with the detection of slow-growing organisms. Semiselective media, made by incorporating certain fungicides and antibiotics to inhibit growth of fungi and bacteria, were used to detect other *Colletotrichum* spp. (7, 10). In addition, a selective medium differentiated two citrus strains of *C. gloeosporioides* (1, 2). A semiselective medium to detect *C. gloeosporioides* and *Glomerella cingulata* (Stoneman) Spauld. & H. Schenk in pepper seeds and other plant parts would be useful for monitoring fungal survival and studying host–pathogen interactions. The objectives of this study were to develop a semiselective medium to detect *C. capsici*, *C. gloeosporioides*, and *G. cingulata* on pepper leaf disks, petioles, and seeds, and to determine their occurrence on seeds and inoculated pepper leaves.

MATERIALS AND METHODS

Capsici (conidia 19.8–28.3 × 2.7–4.8 μm, mean 23.7 × 3.7 μm), a nonteleomorphic isolate of *C. gloeosporioides* (conidia 11.1–18.5 × 2.7–5.0 μm, mean 15.5 × 3.6 μm), and *G. cingulata* (formed gloomate perithecia on pepper plant parts, anamorph *Colletotrichum* sp., conidia 11.1–17.7 × 3.5–6.5 μm, mean 14.4 × 4.8 μm) were originally isolated from hot red pepper fruits of line PBC 595 grown during August 1992 at the Asian Vegetable Research and Development Center (AVRDC), Shanhua, Tainan, Taiwan. Single-conidial isolates of the *Colletotrichum* spp. were maintained on slants of acidified (pH 5) potato-dextrose agar (PDA) at 28°.C. The semiselective medium consisted of a basal medium, one-quarter strength PDA (10 g of PDA and 15 g of agar in 1 L of water). To suppress bacterial growth, chlorampheicol and erythromycin at 6.5 μg/ml each, neomycin sulfate at 20 μg/ml, and tetracycline hydrochloride at 25 μg/ml were added when the basal medium cooled to 50°C after autoclaving. In addition, iprodione (Rovral 50W), 15 μg a.i./ml; fenarimol (Rubigan 11.76%EC), 5 μg a.i./ml; and vinclozolin (Ronilan 50W), 5 μg a.i./ml, were added to suppress fungal growth other than *Colletotrichum* spp. Stock solutions of chloramphenicol, erythromycin, and tetracycline HCl were prepared in 10% methanol; iprodione, fenarimol, and vinclozolin in 20% methanol; and neomycin sulfate in distilled water. All were filter-sterilized through a 0.2-μm Nalgene filter. The basal media with combinations of fungicides and antibiotics were tested to develop the best semiselective medium, which was named *C. gloeosporioides* pepper isolate medium (CGPIM).

Inhibition of mycelial growth on fungicide-amended media. Three-millimeter-diameter disks from the margins of 5 to 5-day-old colonies on PDA of an isolate of an *Alternaria* sp., two isolates of *Fusarium* spp. (isolated from pepper seeds), and *C. capsici* and *C. gloeosporioides* (one isolate of each previously mentioned and five isolates of each from the AVRDC pepper isolate collection) were transferred to the middle of 9-cm-diameter plastic plates containing either basal medium and antibiotics (control) or basal medium amended with either iprodione, iprodione + fenarimol, or iprodione + fenarimol + vinclozolin. Inoculated plates were incubated under 12/12-h day-night cycles at 28°C. Three plates were used as replicates. The colony diameter was measured at 5 and 7 days. Percent inhibition of the mycelial growth was calculated: [(colony diameter of control – colony diameter of amended medium)/colony diameter of control] ×

Accepted for publication 16 December 1994.

© 1995 The American Phytopathological Society

376 Plant Disease/Vol. 79 No. 4
Detection of Colletotrichum spp. on inoculated pepper seedlings. Forty-eight seedlings at the five- to six-leaf stage of var. Long Fruit grown in 5-cm-diameter plastic pots (one plant per pot) containing greenhouse soil mix (soil, rice husk, sand, and compost in a 3:1:1:1 ratio) were sprayed-inoculated with a conidial suspension (10⁶ conidia per milliliter) of either C. capsici, C. gloeosporioides, or G. cingulata until runoff. There were 16 pots for each Colletotrichum spp. Plants were incubated for 48 hr in a chamber programmed for 1 min of mist per 15 min at 28 C, and then transferred to 18-cm plastic pots and placed on greenhouse benches in a completely randomized design with three replicates for each isolate for an additional 83 days. The two lowest attached leaves and petioles were detached from each plant at 5, 30, 52, and 83 days after inoculation (DAI). Petioles were cut into two 1-cm lengths. Two 6-mm-diameter leaf disks from each leaf were cut out with a cork borer. Samples were washed 1 h in running tap water, surface-sterilized in 0.5% sodium hypochlorite for 4 min, and rinsed twice for 2 min each in sterilized distilled water. Sixteen petioles and leaf disks were plated either on double-layered wet Whatman No. 1 filter paper or on CGPIM. Samples on CGPIM were incubated under continuous fluorescent light for 2 days, and samples on wet filter paper were incubated for 14 days under 12/12 light-dark cycles and 100% relative humidity at 28 C. Colletotrichum spp. were detected using a binocular microscope.

Data analysis. Inhibition data were analyzed to determine if experiments could be combined (23) by using JMP (20). Data from this experiment and others were analyzed by ANOVA and means separation by Duncan's multiple range test (P = 0.01).

RESULTS
Inhibition of mycelial growth on fungicide-amended media. As a source of variation, experiments were not significantly (P = 0.01) different, and data from the two experiments were combined for analysis. Alternaria sp. and Fusarium spp. were inhibited significantly (P = 0.01 more than C. capsici and C. gloeo-
sporioides when grown on iprodione-amended basal medium (Table 1). Alternaria sp. and Fusarium spp. did not grow when the basal medium was amended with either iprodione + fenamidol or iprodione + fenamidol + vinclozolin. Mycelial growth of C. capsici was inhibited significantly (P = 0.01) less than C. gloeosporioides. Colonies of C. gloeosporioides had floccose white mycelial growth on iprodione-amended medium and smaller cream-yellow sporulating colonies on media amended with iprodione + fenamidol and iprodione + fenamidol + vinclozolin.

Detection of Colletotrichum spp. from foliage and seeds on fungicide-amended media. Colletotrichum spp. were detected on leaf disks, petioles, and seeds significantly (P = 0.01) more on fungicide-amended media than on basal medium (Table 2). The frequency of Colletotrichum spp. was significantly (P = 0.01) more on leaf disks placed on medium amended with iprodione + fenamidol + vinclozolin than with iprodione or iprodione + fenamidol; but the frequency on petioles was not significantly (P = 0.01) different among iprodione, iprodione + fenamidol, or iprodione + fenamidol + vinclozolin. Seedborne occurrence of Colletotrichum spp. was detected significantly (P = 0.01) more on iprodione + fenamidol + vinclozolin medium than on either iprodione, iprodione + fenamidol, or on basal medium. Incorporation of fenamidol into the medium enhanced detection of C. gloeosporioides. Mycelial growth was restricted, and colonies were cream-yellow with abundant sporulation (Fig. 1).

Detection of Colletotrichum spp. on seeds. Recovery of C. capsici on seeds did not differ between CGPIM (4.8%) and wet filter paper (3.5%), but recovery of C. gloeosporioides differed significantly (P = 0.05, 2% on CGPIM and 0.1% on wet filter paper). Seeds of var. Lyso Sport had the highest frequency of C. capsici (14.5%), but the frequency was not detected on the other two varieties. C. gloeosporioides was recovered at a significantly (P = 0.05) higher rate from var. Lyso (3.8%) than from var. Lyso Sport (0.5%), while recovery from var. KA-6-5 (1.8%) was not significantly different from the other two varieties.

Table 1. Percent inhibition of Alternaria sp., Colletotrichum capsici, C. gloeosporioides, and Fusarium spp. on basal medium amended with different fungicides

<table>
<thead>
<tr>
<th>Fungus</th>
<th>Iprodione</th>
<th>Iprodione + fenamidol</th>
<th>Iprodione + fenamidol + vinclozolin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria sp.</td>
<td>94 a`</td>
<td>100 a</td>
<td>100 a</td>
</tr>
<tr>
<td>C. capsici</td>
<td>15 d</td>
<td>12 e</td>
<td>13 c</td>
</tr>
<tr>
<td>C. gloeosporioides</td>
<td>44 c</td>
<td>62 b</td>
<td>65 b</td>
</tr>
<tr>
<td>Fusarium spp.</td>
<td>70 b</td>
<td>100 a</td>
<td>100 a</td>
</tr>
</tbody>
</table>

`Iprodione at 15 μg a.i./ml, fenamidol at 5 μg a.i./ml, and vinclozolin at 5 μg a.i./ml.
Numbers followed by the same letter within columns are not significantly different using Duncan's multiple range test at P = 0.01.
Detection of *C. gloeosporioides* on stored seeds. The recovery of *C. gloeosporioides* was significantly (P = 0.01) higher at 130 DAH (30%) than at 225 DAH (1%) in seeds obtained from diseased fruits of four pepper varieties—lines when assayed on CGPIM.

Detection of Colletotrichum spp. on inoculated pepper seedlings. Recovery of *Colletotrichum* spp. was significantly (P = 0.05) higher on CGPIM than on wet filter paper at 30, 52, and 83 DAI, but not at 5 DAI. Recovery of *C. capsici*, *C. gloeosporioides*, and *G. cingulata* were significantly (P = 0.05) reduced over time from 5 to 83 DAI (Fig. 2A and B). Recovery of *C. capsici* was significantly (P = 0.05) higher at 30, 52, and 83 DAI than recovery of either *C. gloeosporioides* or *G. cingulata* on either CGPIM or on wet filter paper. Similarly, recovery of *G. cingulata* was significantly (P = 0.01) higher at 30, 52, and 83 DAI on both CGPIM and wet filter paper. *C. gloeosporioides* was detected on 64% of the samples on CGPIM at 30 DAI, which was significantly (P = 0.05) higher than detection on wet filter paper (6%); and 31% detection on CGPIM compared to almost none on wet filter paper at 52 DAI was significant (P < 0.05) (Fig. 2A and B).

DISCUSSION

Rose Bengal medium (7) or a modification of the blotter method (18) has been used to detect *C. capsici* from pepper seeds. In our study, there was no difference between wet filter paper and CGPIM in detecting *C. capsici*, but the CGPIM enhanced detection of *C. gloeosporioides* while allowing for detection of other species of *Colletotrichum*. The seedborne nature of *C. gloeosporioides* on pepper seeds has not been intensely studied, probably because of its obscure, slow-growing nature compared to other faster growing fungi that occur on seeds. Using CGPIM, the growth of *Alternaria* and *Fusarium* species was reduced; thus *C. gloeosporioides* was detected on seeds of some lines at a high frequency. Use of copper hydroxide in the medium stimulated sporulation of slow-growing orange colony types of *C. gloeosporioides* citrus isolates (1). Tolerance to benomyl in slow-growing orange colony types was used to differentiate these from ubiquitous fast-growing gray colony types of *C. gloeosporioides* in citrus foliage washings (12). From our studies, isolates of *C. gloeosporioides* from pepper were neither stimulated to sporulate on medium amended with copper hydroxide at 42.5 µg/ml nor tolerant to benomyl at 2 µg/ml (J. B. Manandhar, unpublished). Amending culture media with cytokinin or phenolic compounds stimulated sporulation of *Colletotrichum dematium* (Pers.) Grove (19). We found that, in media amended with fenamicolor, *C. gloeosporioides* was stimulated to sporulate, producing distinct cream-yellow sporulating colonies with a restricted margin; the growth of other fungi was reduced.

Poor seed quality has been associated with fruits having anthracnose (14). Mycelia and stromata of *Colletotrichum* spp. have been reported as overseasoning structures in pepper seeds (5, 22). Recovery of *C. gloeosporioides* from seeds of infected fruits from four pepper lines declined rapidly from 30 to 1% from seeds stored 130 to 225 DAH. One-year-old seeds of var. Fuyuco, KA-6-5, and LSU Sport stored at room temperature and plated on CGPIM and wet filter paper had a high incidence of *C. capsici* and a low incidence of *C. gloeosporioides*, indicating that the viability of either overseasoning mycelia or stromata was greatly reduced in *C. gloeosporioides*.

Leaf and stem lesions that produce collar rot and dieback of pepper branches caused by *C. capsici* have been reported from India (5, 7, 17, 18). Conidia and/or ascospores of *Colletotrichum* spp. and/or *G. cingulata* germinate quickly after deposition on pepper foliage to form dark appressoria that resist desiccation. Appressoria are known to form adhesive disks for adhering to plant surfaces and remain latent until physiological changes occur in the fruits (15, 16). Marks et al (13) reported abortive penetration attempts of the infection hyphae similar to what we observed. During wet periods, appressoria have been reported to produce secondary conidia (15), which may be involved in secondary spread to pepper fruits. The amount of dark appressoria on older leaves of mango, was used to estimate the level of anthracnose incidence in fruits and blossoms (4). Survival

Table 2. Percent frequency of Colletotrichum spp. on leaf disks, petioles, and seeds on basal medium and basal medium amended with fungicides

<table>
<thead>
<tr>
<th>Fungicide combination</th>
<th>Leaf disk</th>
<th>Petiole</th>
<th>Seed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iproudone</td>
<td>55 b</td>
<td>43 a</td>
<td>38 ab</td>
</tr>
<tr>
<td>Iproudone + fenamicolor</td>
<td>61 b</td>
<td>46 a</td>
<td>35 b</td>
</tr>
<tr>
<td>Iproudone + fenamicolor + vinclozolin</td>
<td>74 a</td>
<td>54 a</td>
<td>42 a</td>
</tr>
<tr>
<td>Basal medium</td>
<td>13 c</td>
<td>13 b</td>
<td>14 c</td>
</tr>
</tbody>
</table>

5Iproudone at 15 µg a.i./ml, fenamicolor at 5 µg a.i./ml, and vinclozolin at 5 µg a.i./ml.

Numbers followed by the same letter within columns are not significantly different using Duncan's multiple range test at P = 0.01.

Fig. 1. Detection of Colletotrichum gloeosporioides on (A) basal medium and (B) on semiselective medium (C. gloeosporioides pepper isolate medium) with bright cream-yellow sporulating colonies of C. gloeosporioides around pepper seeds. Arrows and rings around the fungal colonies were C. gloeosporioides marked by a marking pen on the bottom of 9-cm-diameter dish during evaluation.

Fig. 2. Detection of Colletotrichum capsici (Cc), C. gloeosporioides (Cg), and Glomerella cingulata (Gc) (combined means of leaf disk and petiole) at different days after inoculation on (A) semiselective medium (C. gloeosporioides pepper isolate medium) and on (B) wet filter paper.
of the sclerotia of C. graminicola in
sorghum stalks (3) and appressoria of C. graminicola on barley leaves (21) have
been demonstrated. The detection of
three species of Colletotrichum on pep-
per foliage in our study showed that C. gloeosporioides declined rapidly com-
pared to C. capsici and G. cingulata. This
could indicate a difference in infection
frequency, survival capacity, and/or
ability to produce appressoria.

ACKNOWLEDGMENT
We thank the Pepper Breeding Group at AVRDC
for the supply of pepper seeds.

LITERATURE CITED
isolation procedures for differentiation of
two strains of Colletotrichum gloeosporioides
from citrus. Plant Dis. 76:1176-1178.
development of Colletotrichum gloeosporioides
vival of Colletotrichum graminicola sclerotia in
sorghum stalk residues. Plant Dis. 77:825-827.
4. Fiteri, R. D., Peak, C. M., and Darnell, R.
E. 1984. A model for estimating infection levels
5. Gahukar, K. B., Raut, J. G., and Deshmukh, R. N.
1989. Seed infection in relation to pericarp
infection of Colletotrichum dematium in chili.
borne nature of Colletotrichum capsici in chili
seeds and its control by seed dressing fungicides.
Indian Phytopathol. 23:664-668.
7. Gupta, J. S., Agarwal, S. P., and Dixit, R. B.
1983. Incidence of pathogenic conidia of Col-
etotrichum capsici on the surface of chili.
Indian Phytopathol. 36:357-359.
8. Hadden, J. F., and Black, L. L. 1988. Anthrac-
none of pepper caused by Colletotrichum spp.
Pages 189-199 in: Tomato and Pepper Produc-
Manage. Practices, 1st. S. K. Green, T. D.
Grgign, and B. T. McLean, eds. AVRDC,
Shanhua, Tainan, Taiwan.
9. Hashmi, M. H. 1989. Seed-borne mycelium of
Influence of dew period and temperature on
infection of tomato foliage by Colletotrichum
coccodes. (Abstr.) Phytopathology 82:1091.
11. Kulshrestha, D. D., Mathur, S. B., and
Nergaard, P. 1976. Identification of seed-borne
screening of chili (Capsicum annum) seed
samples for Colletotrichum dematium and its
1965. Direct penetration of leaves on Pupulas
tremuloides by Colletotrichum gloeosporioides.
Phytopathology 55:408-412.
Fruit rot disease of chili in relation to seed
infection. Seed Res. 17:174-177.
Hypothetical model for appressoria, spores,
survival and phylogeny in parasitic fungi. Rev.
Mycol. 41:429-447.
infections of Colletotrichum in tropical and subtropical
fruits. Pages 289-307 in: Colletot-
richum: Biology, Pathology and Control. J. A.
Bailey and M. J. Jeger, eds. CAB International,
Wallingford, UK.
variation and perpetuation of Colletotrichum
capsici (Syr.) Butler & Bisby, causing fruit-rot
Univ. 2:32-36.
Improved blotted method to detect Colletot-
richum on chilli (Capsicum annum) seeds.
elaboration and sporulation of two fungi on
amended media in light or dark. Antonie
Leeuwenhoek 63:23-27.
2 of JMP. Software for Statistical Visualization
on the Apple Macintosh. SAS Institute, Cary,
NC.
the ability of Colletotrichum graminicola to
form appressoria and penetrate barley leaves.
taxonomy, etiology, and control of Colletot-
richum piperonatum (E. & E.) E. & H. and
Colletotrichum capsici (Syr.) B. & B. Plant Dis.
ciples and Procedures of Statistics with Special
Reference to the Biological Sciences. McGraw-
Hill, New York.
dispersal of Colletotrichum gloeosporioides in
simulated rice field conditions. Phytopathology
82:1219-1222.