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Soybean mosaic virus (SMV) is an 
aphid- and seed-transmitted member of 
the Potyviridae that infects soybean (Gly-
cine max L.) plants and causes significant 
losses in the amount and quality of seeds 
harvested (18,20). Since SMV rarely 
infects alternative host species, seed-
borne infections are the primary sources 
of inoculum for SMV infections (18). 
Controlling seed-borne SMV infections 
has become more important with the dis-
covery of Aphis glycines Matsumara in 
North America, which can efficiently 
transmit SMV among soybean plants 
(10,13,19). SMV isolates can be divided 
into strains (G1 through G7) based on the 
symptoms they produce on a differential 
set of soybean lines (9,36). In addition to 
differing in symptom severity, SMV 
strains G1 through G7 also differ in the 
efficiency with which they are transmitted 

through seeds of different soybean lines 
(7). 

As with other members of the Potyviri-
dae, the efficiency with which SMV is 
transmitted through seed is dependent 
upon the strain of virus analyzed and the 
genotype of the host. While differences in 
seed transmission of Pea seed borne mo-
saic virus (PSbMV) were associated with 
the inability of poorly seed-transmitted 
virus isolates to invade embryos (42), 
Bowers and Goodman (6) reported that 
cultivar-specific differences in seed trans-
mission of a severe isolate of SMV were 
related to differences in the abilities of 
SMV strains to remain infectious within 
maturing embryos. Seed-transmissible 
strains of PSbMV were shown to enter 
developing embryos through a transient 
symplastic pathway that connects the base 
of the suspensor to the developing embryo 
(37). Isolates of PSbMV not transmitted 
through seed infected the testa, but were 
unable to invade and infect developing 
embryos. In contrast, infectious SMV was 
found in both the testa and embryo of im-
mature seeds of a soybean cultivar with 
very low seed transmission, but only in the 
testa after seeds had desiccated (6). 

Johansen et al. (25) showed that regions 
of the PSbMV genome that encode the 
helper component/protease (HC-Pro) and 

coat protein (CP) contained determinants 
for seed transmission. HC-Pro is a multi-
functional protein that, in addition to its 
role in seed transmission, facilitates aphid 
transmission (33) and long-distance 
movement (12), binds RNA (28), and is a 
potent suppressor of posttranscriptional 
gene silencing (PTGS) (2). Much like HC-
Pro, the γb protein of Barley stripe mosaic 
virus (BSMV) has been shown to be in-
volved in both seed transmission and sup-
pression of PTGS (14,44). Similarly, the 
12K protein of Pea early browning virus is 
a determinant of seed transmission (41), 
and the corresponding protein of Tobacco 
rattle virus is a suppressor of PTGS (35). 
These findings suggest that specific 
movement and/or protection of viral RNA 
from PTGS-mediated degradation are in-
volved in transmission of viruses through 
seed. 

Bowers and Goodman (7) also reported 
SMV strain-by-soybean line interactions in 
seed-coat mottling. In cultivated soybean, 
the distribution of anthocyanin and proan-
thocyanidin pigments in seed coats is con-
trolled by four alleles at the I locus (4). 
Alleles that suppress the accumulation of 
pigments in seed coats contain inverted 
repeats of the chalcone synthase (CHS) 
gene cluster (11,40). The structure of the I 
locus leads to PTGS of CHS mRNAs that 
results in yellow-colored soybean seeds. 
SMV infections, presumably through the 
action of HC-Pro, induce seed-coat mot-
tling by partially suppressing silencing of 
the CHS mRNAs (38). The strain-by-line 
interactions in seed transmission and seed-
coat mottling suggest that there are very 
specific interactions of virus and host 
components in movement of SMV into 
soybean embryos and/or survival of SMV 
in maturing seeds and suppression of si-
lencing. 

The genetics of seed transmission also 
have been examined. With hosts of BSMV, 
resistance to seed transmission is con-
trolled by a single recessive gene (8). In 
contrast, seed transmission of PSbMV and 
Alfalfa mosaic virus is controlled by mul-
tiple genes in a quantitative manner 
(32,43). The genetics of resistance to seed 
transmission of SMV have not been char-
acterized (22). 

In this study, we compared seed trans-
mission of four laboratory strains of SMV 
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(G2, G5, G7, and G7F) that had been 
maintained by mechanical inoculation and 
four field SMV isolates (413, 746, 1083, 
and 88799) that had been maintained by 
aphid or seed transmission, with the goal 
of establishing a system to investigate viral 
and host determinants of strain-specific 
transmission of SMV through seed. Be-
cause of the roles of HC-Pro and virus 
stability in transmission of potyviruses 
through seed, the predicted amino acid 
sequences of the HC-Pro and CP coding 
regions were determined for each virus 
isolate and compared to their seed and 
aphid transmission phenotypes. 

MATERIALS AND METHODS 
Plant material and virus isolates. 

Seeds of plant introductions (PIs) PI 
68522, PI 68671, PI 84657, PI 86449, PI 
88799, and PI 229324 were obtained from 
the USDA Soybean Germplasm Collec-
tion, Urbana, IL. Prior to use in seed 
transmission studies, each PI was grown in 
an insect-free greenhouse, and seeds were 
collected from plants that were negative 
for SMV infection by double-antibody 
sandwich enzyme-linked immunosorbent 
assay (DAS-ELISA) using antibodies from 
Agdia (Elkhart, IN). SMV strains G2 and 
G7 were provided by J. Hill (Iowa State 
University, Ames); SMV G5 was obtained 
from American Type Culture Collection 
(Manassas, VA); and G7F was recovered 
from an original culture of Cho and 
Goodman (9). SMV isolates 413, 746, and 
1083 were collected from field plots on the 
Crop Sciences Research and Education 
Center in Urbana, IL (13). SMV isolate 
88799 was obtained from infected seeds of 
PI 88799. SMV strains G2, G5, G7, and 
G7F were maintained by mechanical in-
oculation. SMV isolates 413, 746, and 
1083 were maintained through transmis-
sion by A. glycines on cultivar Williams 
82. SMV isolate 88799 was maintained by 

seed transmission on PI 88799. Virus ex-
tracts for mechanical inoculations were 
prepared from infected soybean plants 
maintained in the greenhouse by grinding 
infected leaves with sterilized mortars and 
pestles in chilled 25 mM potassium phos-
phate buffer, pH 7.1, 10 mM Na2SO3. Uni-
foliate leaves were dusted with Carborun-
dum (320 grit, Fisher, Fairlawn, NJ) and 
inoculated by rubbing with pestles dipped 
in inoculum. 

Seed and aphid transmission. Field 
experiments were conducted to compare 
the rates at which isolates of SMV were 
transmitted through seed. The six soybean 
PIs were inoculated separately at the unifo-
liate growth stage with eight SMV strains 
and isolates (G2, G5, G7, G7F, 413, 746, 
1083, and 88799). All infections were 
confirmed by DAS-ELISA. Plants were 
grown to maturity and seeds were har-
vested and stored at 4°C. Seed transmis-
sion rates were determined by planting up 
to 200 seeds from infected plants in 96-
well polystyrene trays containing soilless 
mix (Sunshine Mix LC1, Sun Gro Horti-
culture Inc., Bellevue, WA). SMV infec-
tions were detected using a tissue blot 
assay (27). For virus–host combinations 
that produced less than 200 seeds, all 
available seeds were analyzed. Samples 
with ambiguous results from tissue blots 
were retested by ELISA. 

Field experiments were conducted dur-
ing 2003 and 2004 in field cages 3 × 3 m 
and 1.5 × 3 m on the Crop Sciences Re-
search and Education Center in Urbana, 
IL. Cages were covered with 32-mesh 
screen to exclude insect vectors. Single 
row plots, 0.5 m in length and 0.6 m be-
tween rows, were hand sown to obtain six 
plants per row (one plant of each PI line). 
Single row plots were inoculated with an 
individual virus isolate. Plots were ar-
ranged in a randomized incomplete block 
design with three replications. Analysis of 

variance of seed transmission and mottling 
data were performed using SAS (version 
9.13; SAS Institute, Cary, NC). 

Colonies of A. glycines were maintained 
in controlled environment chambers on 
cultivar Williams 82, which was also used 
for the aphid transmission assays. Alate 
aphids were collected and starved for at 
least 30 min and given 2-min access feeds 
on leaf tissue infected with SMV 88799. 
Five aphids were transferred to each of 10 
soybean seedlings and allowed to feed for 
at least 24 h before being transferred to a 
second environment chamber for 48 h in 
which a Hot Shot No-Pest Strip (Chem-
sico, St. Louis, MO) had been mounted. 
Subsequently, inoculated plants were 
maintained in a greenhouse for 4 weeks 
and assayed by tissue blot assay. Aphid 
transmission phenotypes for SMVs G2, 
G5, G7, G7F, 413, 746, and 1083 were 
determined previously (13). 

Sequence analysis. The HC-Pro and CP 
sequences of SMV G2, G5, G7, G7F, 413, 
746, and 1083 were determined previously 
(13). HC-Pro and CP nucleotide sequences 
of SMV 88799 were determined by direct 
sequencing of polymerase chain reaction 
(PCR) products (13). Sequences were 
aligned using ClustalX (23) and edited 
with GeneDoc (30). 

RESULTS 
Seed transmission and mottling. In 

both trials, SMV strains were differentially 
transmitted through seed (Table 1). Trans-
mission of SMV through seed ranged from 
0 to 43% depending on the soybean line 
and virus strain analyzed (Table 1). In 
addition, significant (P < 0.001) SMV 
isolate-by-soybean line interactions were 
seen in germination and seed-coat mottling 
(Tables 1 and 2). SMV isolates 746 and 
88799 showed the largest differences in 
transmission rates among soybean lines. 
More than 20% of the seedlings germi-

Table 1. Percent transmission of Soybean mosaic virus (SMV) isolates through seed and percent germination of seeds 

 Percent germinated seedlings infected with SMV SMV 
strain Trialw PI 68522  PI 68671  PI 84657  PI 86449  PI 88799  PI 229324 

G2 1 0x (86)y  0 (70)  1 (10)  0 (70)  1 (69)  0 (48) 
 2 0 (74)  0 (48)  1 (97)  0 (90)  4 (74)  0 (80) 
G5 1 0 (92)  0 (70)  4 (44)  0 (92)  2 (98)  19 (90) 
 2 0 (85)  1 (88)  1 (100)  0 (93)  2 (96)  13 (72) 
G7 1 1 (54)  0 (38)  0 (8)  0 (58)  0 (24)  8 (59) 
 2 0 (80)  0 (33)  1 (86)  1 (91)  5 (98)  0 (100) 
G7F 1 0 (44)  0 (37)  0 (12)  0 (48)  0 (34)  0 (71) 
 2 0 (80)  0 (39)  0 (85)  0 (100)  0 (67)  0 (43) 
413 1 8 (71)  32 (78)  19 (20)  6 (78)  17 (60)  31 (77) 
 2 13 (81)  24 (75)  29 (98)  5 (66)  32 (84)  24 (96) 
746 1 0 (79)  6 (72)  0 (62)  0 (100)  28 (80)  43 (90) 
 2 0 (96)  0 (92)  0 (96)  0 (95)  37 (100)  32 (100) 
1083 1 10 (30)  20 (66)  13 (74)  0 (92)  16 (71)  33 (83) 
 2 5 (64)  0 (50)  0 (73)  5 (78)  12 (73)  NSz (NS) 
88799 1 0 (93)  0 (65)  7 (82)  0 (97)  29 (94)  40 (92) 
 2 0 (89)  0 (93)  0 (96)  0 (68)  20 (92)  22 (99) 

w Trial 1 was conducted during 2003; trial 2 was conducted during 2004. When available, 200 seeds were planted for each line. 
x Percent germinated seedlings infected with SMV. 
y Percent seeds germinated. 
z No seeds produced. 
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nated from field-grown plants of PIs 88799 
and 229324 infected with SMVs 746 and 
88799 were infected with SMV. But none 
of the seedlings from similarly field-grown 
and infected plants of PIs 68522 and 
68671 were infected with SMV 746 or 
88799. In contrast, SMV 413 was transmit-
ted through seed from all PIs at rates rang-
ing from 5 to 32%. No seed transmission 
was detected of SMV G7F from either year 
in the field trials. Data from the 2 years did 
not differ significantly (P > 0.1). The rates 
of seed transmission (correlation coeffi-
cient = 0.85) were highly correlated be-
tween years of the field trials, as were 
percentages of mottled seeds (correlation 
coefficient = 0.93). 

As with seed transmission, significant 
(P < 0.001) SMV isolate-by-soybean line 
interactions were seen in percentage of 
seed-coat mottling (Table 2). Soybean 
lines were separated into four groups 
based on their mottling responses to dif-
ferent SMV strains (Table 3). At least 
74% of the seeds of PI 88799 and PI 
229324 were mottled from plants infected 
with any one of the eight SMV isolates. 
In contrast, when the results from the 2 
years were averaged, 3% or less of the 
seeds of PIs 68522, 68671, 84657, and 
86449 were mottled when plants were 
infected with SMV G5, 746, and 88799. 
When the same PIs were infected with 
SMV strains G2, G7, G7F, 413, and 1083, 
the average percentage of mottled seeds 
over the 2 years ranged from 15 to 95%. 
Soybean lines were ranked similarly 
based on their percentages of seed trans-
mission and seed-coat mottling. PIs 
68522 and 86449 had among the lowest 
mean percentages of seed transmission 
and seed-coat mottling. PIs 88799 and 
229324 had the highest mean percentages 
of seed transmission and seed-coat mot-
tling (Table 3). 

Similar patterns were seen in aphid and 
seed transmission (Table 4). As a group, 

SMV isolates that had been maintained by 
mechanical inoculation were transmitted 
by aphids and through seed at significantly 
lower rates (0% aphid transmission and 
1% seed transmission) than SMV isolates 
that had been maintained by A. glycines or 
seed transmission (50% aphid transmission 
and 13% seed transmission). 

Sequence analysis. The HC-Pro coding 
regions of all of the highly seed transmis-
sible SMV strains, except SMV 88799, 
shared two amino acids that the poorly 
transmitted strains lacked, an N at position 
65 and a K at position 100 compared with 
H or Q and R, respectively, in the poorly 
transmitted strains (Table 4). The predicted 
CP amino acid sequences of all highly seed 
transmissible strains (413, 746, 1083, and 
88799) had the DAG amino acid triplet 
near their amino termini, while the CP 
sequences of G5, G7, and G7F contained 
DAD, GAD, and GAD triplets, respec-
tively. Even though SMVs G2 and 88799 
differed in their transmission through seed 
in field experiments, their HC-Pro and CP 
predicted amino acid sequences were iden-
tical except for an N to S substitution at 
position 449 in HC-Pro. 

DISCUSSION 
In this study, we compared the abilities 

of eight SMV strains to induce seed-coat 
mottling and to be transmitted through 
seed and by aphids. As described by 
Pacumbaba (31), seed coat mottling was 
not a good indication of seed transmissibil-
ity of SMV isolates. Even so, when soy-
bean lines were inoculated with seed-
transmissible SMV isolates, seed coat 
mottling and transmissibility were corre-
lated. Differential transmission of SMV 
through seed by soybean lines and strain-
by-line variation in seed transmission and 
seed coat mottling have been reported 
previously (5–7,17). Much of the previous 
analyses were conducted using the Illinois 
severe isolate of SMV (SMV-Il-S), which 

was later reclassified as SMV G2 (9). In 
experiments conducted by Bowers and 
Goodman (7), SMVs G1 through G7 all 
were transmitted efficiently through seed 
for a set of soybean lines. In the present 
study, however, SMVs G2, G5, G7, and 
G7F were transmitted poorly through seed 
of all soybean lines analyzed. For example, 
SMV-Il-S was transmitted through 29 and 
34% of seed of PIs 84657 and 229324, 
respectively (5); but in this study, SMV G2 
was transmitted through seed at rates of 1 
and 0% in the same PIs. These differences 
in seed transmissibility probably result 
from the repeated mechanical transmission 
of the laboratory strains that has occurred 
in the nearly 30 years since the original 
experiments were conducted. 

Repeated serial transmission of potyvi-
ruses has been shown to lead to loss of 
aphid transmissibility (15,39), which has 
been associated with amino acid sequence 
changes in the HC-Pro and CP coding 
regions (29). Mutations in three amino 
acids, DAG, near the amino terminus of 
the CP have been shown to result in loss of 
transmission by aphids for multiple potyvi-
ruses (3,21). In this study, most poorly 
seed- and aphid-transmitted SMV isolates 
had mutations in the DAG motif. However, 
some potyviruses, e.g., isolates of PSbMV, 
do not have DAG triplets and are still 
transmitted efficiently by aphids and 
through seed (26). While HC-Pro and CP 
have been implicated in both aphid and 
seed transmission (26), different regions of 
the proteins may be involved in the two 
modes of transmission. It is also possible 
that mechanical transmission of SMV 
exerted a selection for virus structures that 
were less compatible with aphid and seed 
transmission. 

The association of seed and aphid 
transmissibility suggested that sequences 
required for aphid and seed transmission 
need constant selection to avoid genetic 
drift and loss of function. Recently, Ali et 
al. (1) showed that aphid transmission of 
Cucumber mosaic virus represented a bot-
tleneck that reduced the number of muta-
tions in transmitted viruses. Similarly, 
transmission of SMV through seed re-
sulted in the selection of viruses that often 

Table 2. Percent mottled seeds from Soybean mosaic virus (SMV)-infected field-grown plants 

 Percent seeds showing seed-coat mottling SMV  
strain Trialx PI 68522 PI 68671 PI 84657 PI 86449 PI 88799 PI 229324

G2 1 32y 69 93 38 98 100 
 2 43 62 61 41 96 100 
G5 1 4 6 4 0 81 82 
 2 0 0 0 0 77 74 
G7 1 29 59 86 19 100 87 
 2 9 30 84 14 95 100 
G7F 1 24 62 94 31 98 100 
 2 7 71 96 11 100 100 
413 1 75 70 62 60 98 100 
 2 63 39 94 77 96 100 
746 1 0 0 0 0 78 79 
 2 0 0 0 0 85 80 
1083 1 62 60 67 32 100 93 
 2 84 61 93 81 100 NSz 

88799 1 0 0 0 2 86 76 
 2 0 0 0 0 89 77 

x Trial 1 was conducted during 2003; trial 2 was conducted during 2004. 
y Percent mottled seeds from samples of 200 seeds, when available. 
z No seeds produced. 

Table 3. Transmission of Soybean mosaic virus
(SMV) through seed and seed-coat mottling of 
six soybean plant introductions 

 Seed  
transmission 

Seed  
mottling 

PI 68522 2.3 aby 27.0 az 
PI 68671 5.1 b 36.8 b 
PI 84657 4.7 b 52.1 c 
PI 86449 1.2 a 25.4 a 
PI 88799 12.8 c 92.3 d 
PI 229324 17.6 d 89.9 d 

y Values within a column with the same letters 
are not significantly different (P < 0.05). Least 
significant difference (LSD) = 3.2. 

z LSD = 7.2. 
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had different virulence phenotypes than the 
virus used for inoculation (16). 

The findings of Johansen et al. (25) that 
CP and HC-Pro coding regions of the 
PSbMV genome were required for effi-
cient transmission through seed of Pisum 
sativum are consistent with the association 
between aphid and seed transmissibility 
observed here. For a virus to be transmit-
ted through seed, it must infect embryos 
and survive seed desiccation (24). Brown 
and Goodman (6,34) showed that both 
seed-transmissible and nontransmissible 
strains of SMV invaded soybean embryos, 
but only SMVs that remained infectious 
were transmitted through seed. The in-
volvement of CP may be related to differ-
ential stabilities of virions of different 
isolates. Variation in HC-Pro amino acid 
sequence may alter the protein’s ability to 
bind virions, aphid stylets, or RNA, or its 
ability to suppress PTGS. Since seed 
transmission is an important source of 
SMV infections (18), viruses that are effi-
ciently transmitted both vertically and 
horizontally would, undoubtedly, be more 
readily dispersed within and among soy-
bean fields than viruses lacking one of 
these modes of transmission. Additional 
studies will be required to identify the 
SMV and soybean genes involved in seed 
transmission. 
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